类(class)和对象(object)

在面向对象中,类可以说是创建对象的模板,也是对一系列相似物体的描述。

类可以创建多个对象,对象可以说是类在计算机中的投影。

如果,我们无法理解类和对象,我们可以使用现实描述类和对象。

在现实中,我们把人归纳成“人类”,而类的具体呈现是一个个的人,这个人可以是你,也可以是我。

对象是类的一个具体实例(instance),拥有类的成员变量和成员函数。

类的成员变量=类的属性
类的成员函数=类的方法

类与结构体

与结构体一样,类只是一种复杂数据类型的声明,不占用内存空间。而对象是类这种数据类型的一个变量,或者说是通过类这种数据类型创建出来的一份实实在在的数据,所以占用内存空间。

类的定义

一个简单类的定义:

1
2
3
4
5
6
7
8
9
10
11
class Student{
public:
//成员变量
char *name;
int age;
float score;
//成员函数
void say(){
cout<<name<<"的年龄是"<<age<<",成绩是"<<score<<endl;
}
};

classC++中新增的关键字。

上面的代码创建了一个 Student 类,它包含了 3 个成员变量和 1 个成员函数。

类只是一个模板(Template),编译后不占用内存空间,所以在定义类时不能对成员变量进行初始化,因为没有地方存储数据。只有在创建对象以后才会给成员变量分配内存,这个时候就可以赋值了。

创建对象

以上Student类,可以创建对象,例如:

1
Student stuName; //创建对象

Student是类名,stuName是对象名亦是变量名。

在创建对象时,也可以使用class关键字,但是习惯上我们并不使用class关键字(编程语言中,能偷懒且不会产生歧义的,一般都会省略。),例如:

1
2
class Student stu1; //√
Student stu2; //√

除了创建单个对象,还可以创建对象数组:

1
Student stus[10]; //对象数组

以上创建的对象或变量,都是在内存中的栈区创建的,好处是不需要动态分配内存和回收内存,减少编程难度,坏处是如果我们创建一个很大的对象,可能会栈溢出。如果想在堆区分配内存,就需要使用**new**关键字。

访问类的成员

类是有成员变量和成员函数的,我们可以创建一个对象,通过点号.来访问。其它面向对象语言的很多类似。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
using namespace std;
//类通常定义在函数外面
class Student{
public:
//类包含的变量
char *name;
int age;
float score;
//类包含的函数
void say(){
cout<<name<<"的年龄是"<<age<<",成绩是"<<score<<endl;
}
};
int main(){
//创建对象
Student stu;
stu.name = "小明";
stu.age = 15;
stu.score = 92.5f;
stu.say();
return 0;
}

运行结果:
小明的年龄是15,成绩是92.5

类通常定义在函数外面,当然也可以定义在函数内部,不过很少这样使用。

使用对象的指针

C中没有对象的概念,在 C++ 中有对象,所以也有 C++ 对象指针(指向对象的指针)。

前面Student类,我们通过它在栈上分配内存,创建对象,如下:

1
2
Student stu;
Student *pStu = &stu;

pStu是一个对象指针,指向对象stu

堆区上创建对象,如下:

1
Student *pStu = new Student;

使用 new 在堆上创建出来的对象是匿名的,没法直接使用,必须要用一个指针指向它,再借助指针来访问它的成员变量或成员函数。

栈内存是程序自动管理的,不能使用 delete 删除在栈上创建的对象;堆内存由程序员管理,对象使用完毕后可以通过 delete 删除。在实际开发中,new 和 delete 往往成对出现,以保证及时删除不再使用的对象,防止无用内存堆积。

通过对象名字访问成员使用点号**.**,通过对象指针访问成员使用箭头**->**,这和结构体非常类似。

C++类的成员变量

类可以看做是一种数据类型,它类似于普通的数据类型,但是又有别于普通的数据类型。类这种数据类型是一个包含成员变量和成员函数的集合。

类的成员变量和普通变量一样,也有数据类型和名称,占用固定长度的内存。但是,在定义类的时候不能对成员变量赋值,因为类只是一种数据类型或者说是一种模板,本身不占用内存空间,而变量的值则需要内存来存储。

C++类的成员函数

类的成员函数也和普通函数一样,都有返回值和参数列表,它与一般函数的区别是:成员函数是一个类的成员,出现在类体中,它的作用范围由类来决定;而普通函数是独立的,作用范围是全局的,或位于某个命名空间内。

成员函数可以在类体中定义,也可以在类体外定义。以下代码示例。

类体中:

1
2
3
4
5
6
7
8
9
10
11
class Student{
public:
//成员变量
char *name;
int age;
float score;
//成员函数
void say(){
cout<<name<<"的年龄是"<<age<<",成绩是"<<score<<endl;
}
};

类体外:

1
2
3
4
5
6
7
8
9
10
11
12
13
class Student{
public:
//成员变量
char *name;
int age;
float score;
//成员函数
void say(); //函数声明
};
//函数定义
void Student::say(){
cout<<name<<"的年龄是"<<age<<",成绩是"<<score<<endl;
}

::被称为域解析符(也称作用域运算符或作用域限定符),用来连接类名和函数名,指明当前函数属于哪个类。

成员函数必须先在类体中作原型声明,然后在类外定义,也就是说类体的位置应在函数定义之前。

在类体中和类体外定义成员函数的区别

在类体中和类体外定义成员函数是有区别的:在类体中定义的成员函数会自动成为内联函数,在类体外定义的不会。当然,在类体内部定义的函数也可以加 inline 关键字,但这是多余的,因为类体内部定义的函数默认就是内联函数。

内联函数一般不是我们所期望的,它会将函数调用处用函数体替代,所以我建议在类体内部对成员函数作声明,而在类体外部进行定义,这是一种良好的编程习惯,实际开发中大家也是这样做的。

如果你既希望将函数定义在类体外部,又希望它是内联函数,那么可以在定义函数时加 inline 关键字。当然你也可以在函数声明处加 inline,不过这样做没有效果,编译器会忽略函数声明处的 inline。具体情况可以查看内联函数的内容。代码如下:

1
2
3
4
5
6
7
8
9
10
11
class Student{
public:
char *name;
int age;
float score;
void say(); //内联函数声明,可以增加 inline 关键字,但编译器会忽略
};
//函数定义
inline void Student::say(){
cout<<name<<"的年龄是"<<age<<",成绩是"<<score<<endl;
}

这样,say() 就会变成内联函数。

这种在类体外定义 inline 函数的方式,必须将类的定义和成员函数的定义都放在同一个头文件中(或者同一个源文件中),否则编译时无法进行嵌入(将函数代码的嵌入到函数调用出)
虽然 C++ 支持将内联函数定义在类的外部,但我强烈建议将函数定义在类的内部,这样它会自动成为内联函数,何必费力不讨好地将它定义在类的外部呢,这样并没有任何优势。

C++类成员的访问权限

C++通过 public、protected、private 三个关键字来控制成员变量和成员函数的访问权限,它们分别表示公有的、受保护的、私有的,被称为成员访问限定符。

Java、C# 程序员注意,C++ 中的 public、private、protected 只能修饰类的成员,不能修饰类,C++中的类没有共有私有之分。

在类的内部(定义类的代码内部),无论成员被声明为 public、protected 还是 private,都是可以互相访问的,没有访问权限的限制。

在类的外部(定义类的代码之外),只能通过对象访问成员,并且通过对象只能访问 public 属性的成员,不能访问 private、protected 属性的成员。

不写 private 也不写 public,就默认为 private。

public、private、protected的重点难点一般都会在继承中体现。

C++类的封装

前面我们大概简单知道了public、private、protected,那它们有什么用呢?其实这主要为面向对象设计考虑,方便程序员能够更好的设计软件,解决软件工程的问题。

封装,是指尽量隐藏类的内部实现,只向用户提供有用的成员函数。

我们通过对成员变量进行private限制,使用public成员函数进行访问或修改。

C++对象的内存模型

类是创建对象的模板,不占用内存空间,不存在于编译后的可执行文件中;而对象是实实在在的数据,需要内存来存储。对象被创建时会在栈区或者堆区分配内存。

直观的认识是,如果创建了 10 个对象,就要分别为这 10 个对象的成员变量和成员函数分配内存,如下图所示:

不同对象的成员变量的值可能不同,需要单独分配内存来存储。但是不同对象的成员函数的代码是一样的,上面的内存模型保存了 10 份相同的代码片段,浪费了不少空间,可以将这些代码片段压缩成一份。

事实上编译器也是这样做的,编译器会将成员变量和成员函数分开存储:分别为每个对象的成员变量分配内存,但是所有对象都共享同一段函数代码。如下图所示:

上面情况如果对javascript原型链有些了解,您应该很容易认识。

C++对象的内存占用问题,它和struct非常相似,同样存在内存对齐,具体情况可以参考C语言结构体。

C++函数的编译和成员函数的实现

前面我们知道,对象的内存中只保留了成员变量,除此之外,没有任何的其它信息。它不会记录它的类型,也不会记录它的成员函数。那么 C++ 是如何通过对象调用成员函数的呢?

C++函数的编译

C++和C语言的编译方式不同。C语言中的函数在编译时名字不变,或者只是简单的加一个下划线_(不同的编译器有不同的实现),例如,func() 编译后为 func() 或 _func()。

而C++中的函数在编译时会根据它所在的命名空间、它所属的类、以及它的参数列表(也叫参数签名)等信息进行重新命名,形成一个新的函数名。这个新的函数名只有编译器知道,对用户是不可见的。对函数重命名的过程叫做名字编码(Name Mangling),是通过一种特殊的算法来实现的。

Name Mangling 的算法是可逆的,既可以通过现有函数名计算出新函数名,也可以通过新函数名逆向推演出原有函数名。Name Mangling 可以确保新函数名的唯一性,只要函数所在的命名空间、所属的类、包含的参数列表等有一个不同,最后产生的新函数名也不同。

如何查看Name Mangling产生的新函数名

成员函数的调用

成员函数最终被编译成与对象无关的全局函数,如果函数体中没有成员变量,那问题就很简单,不用对函数做任何处理,直接调用即可。

如果成员函数中使用到了成员变量该怎么办呢?成员变量的作用域不是全局,不经任何处理就无法在函数内部访问。

C++ 规定,编译成员函数时要额外添加一个参数,把当前对象的指针传递进去,通过指针来访问成员变量。(C++中是this,其它编程语言看情况而定,java也是this,rust是self。)如下:

1
2
3
4
void Demo::display(){
cout<<a<<endl;
cout<<b<<endl;
}

那么编译后的代码类似于:

1
2
3
4
5
void new_function_name(Demo * const p){
//通过指针p来访问a、b
cout<<p->a<<endl;
cout<<p->b<<endl;
}

使用obj.display()调用函数时,也会被编译成类似下面的形式:

1
new_function_name(&obj);

Demo * const p中的 const 表示指针不能被修改,p 只能指向当前对象,不能指向其他对象。

这样通过传递对象指针就完成了成员函数和成员变量的关联。这与我们从表明上看到的刚好相反,通过对象调用成员函数时,不是通过对象找函数,而是通过函数找对象。

这一切都是隐式完成的,对程序员来说完全透明,就好像这个额外的参数不存在一样。

C++构造函数

构造函数是一种特殊的成员函数,它没有返回值,不需要显式调用,而是在创建对象时自动执行。

构造函数最好是 public 属性的,否则创建对象时无法调用。当然,设置为 private、protected 属性也不会报错,但是没有意义。

构造函数没有返回值,因为没有变量来接收返回值,即使有也毫无用处,这意味着:

  • 不管是声明还是定义,函数名前面都不能出现返回值类型,即使是 void 也不允许;
  • 函数体中不能有 return 语句。

构造函数的重载

和普通成员函数一样,构造函数是允许重载的。

构造函数的调用是强制性的,一旦在类中定义了构造函数,那么创建对象时就一定要调用,不调用是错误的。如果有多个重载的构造函数,那么创建对象时提供的实参必须和其中的一个构造函数匹配;反过来说,创建对象时只有一个构造函数会被调用。(如果定义了有参构造,但是没有定义无参构造,那么无参构造是不能调用的。)

默认构造函数

如果用户自己没有定义构造函数,那么编译器会自动生成一个默认的构造函数,只是这个构造函数的函数体是空的,也没有形参,也不执行任何操作。比如 Student 类,默认生成的构造函数如下:

1
2
3
Student(){

}

一个类必须有构造函数,要么用户自己定义,要么编译器自动生成。一旦用户自己定义了构造函数,不管有几个,也不管形参如何,编译器都不再自动生成。

需要注意的一点是,调用没有参数的构造函数也可以省略括号。例如:
Student类在栈上创建对象可以写作Student stu()或Student stu,在堆上创建对象可以写作Student _pstu = new Student()或Student _pstu = new Student,它们都会调用构造函数 Student()。

构造函数初始化列表

构造函数的一项重要功能是对成员变量进行初始化,为了达到这个目的,可以在构造函数的函数体中对成员变量一个个赋值,还可以采用_初始化列表_。

使用构造函数初始化列表并没有效率上的优势,仅仅是书写方便,尤其是成员变量较多时,这种写法非常简单明了。

C++构造函数的初始化列表使得代码更加简洁,请看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <iostream>
using namespace std;

class Student{
private:
char *m_name;
int m_age;
float m_score;
public:
Student(char *name, int age, float score);
void show();
};

//采用初始化列表
Student::Student(char *name, int age, float score): m_name(name), m_age(age), m_score(score){
//TODO:
}
void Student::show(){
cout<<m_name<<"的年龄是"<<m_age<<",成绩是"<<m_score<<endl;
}

int main(){
Student stu("小明", 15, 92.5f);
stu.show();
Student *pstu = new Student("李华", 16, 96);
pstu -> show();

return 0;
}

运行结果:
小明的年龄是15,成绩是92.5
李华的年龄是16,成绩是96

如本例所示,定义构造函数时并没有在函数体中对成员变量一一赋值,其函数体为空(当然也可以有其他语句),而是在函数首部与函数体之间添加了一个冒号:,后面紧跟m_name(name), m_age(age), m_score(score)语句,这个语句的意思相当于函数体内部的m_name = name; m_age = age; m_score = score;语句,也是赋值的意思。

使用构造函数初始化列表并没有效率上的优势,仅仅是书写方便,尤其是成员变量较多时,这种写法非常简单明了。

初始化列表可以用于全部成员变量,也可以只用于部分成员变量。下面的示例只对 m_name 使用初始化列表,其他成员变量还是一一赋值:

1
2
3
4
Student::Student(char *name, int age, float score): m_name(name){
m_age = age;
m_score = score;
}

_注意,成员变量的初始化顺序与初始化列表中列出的变量的顺序无关,它只与成员变量在类中声明的顺序有关。_请看代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <iostream>
using namespace std;

class Demo{
private:
int m_a;
int m_b;
public:
Demo(int b);
void show();
};

Demo::Demo(int b): m_b(b), m_a(m_b){ }
void Demo::show(){ cout<<m_a<<", "<<m_b<<endl; }

int main(){
Demo obj(100);
obj.show();
return 0;
}

运行结果:
2130567168, 100

在初始化列表中,我们将 m_b 放在了 m_a 的前面,看起来是先给 m_b 赋值,再给 m_a 赋值,其实不然!成员变量的赋值顺序由它们在类中的声明顺序决定,在 Demo 类中,我们先声明的 m_a,再声明的 m_b,所以构造函数和下面的代码等价:

1
2
3
4
Demo::Demo(int b): m_b(b), m_a(m_b){
m_a = m_b;
m_b = b;
}

给 m_a 赋值时,m_b 还未被初始化,它的值是不确定的,所以输出的 m_a 的值是一个奇怪的数字;给 m_a 赋值完成后才给 m_b 赋值,此时 m_b 的值才是 100。

obj 在栈上分配内存,成员变量的初始值是不确定的。

初始化 const 成员变量

构造函数初始化列表还有一个很重要的作用,那就是初始化 const 成员变量。初始化 const 成员变量的唯一方法就是使用初始化列表。例如 VS/VC 不支持变长数组(数组长度不能是变量),我们自己定义了一个 VLA 类,用于模拟变长数组,请看下面的代码:

1
2
3
4
5
6
7
8
9
10
11
class VLA{
private:
const int m_len;
int *m_arr;
public:
VLA(int len);
};
//必须使用初始化列表来初始化 m_len
VLA::VLA(int len): m_len(len){
m_arr = new int[len];
}

VLA 类包含了两个成员变量,m_len 和 m_arr 指针,需要注意的是 m_len 加了 const 修饰,只能使用初始化列表的方式赋值,如果写作下面的形式是错误的:

1
2
3
4
5
6
7
8
9
10
11
class VLA{
private:
const int m_len;
int *m_arr;
public:
VLA(int len);
};
VLA::VLA(int len){
m_len = len;
m_arr = new int[len];
}

构造函数之间的相互调用

类似java中的构造函数调用另外一个构造函数,如下:

1
2
3
4
5
6
7
8
public class Student{
Student(String name){
this(name,0);
}
Student(String name,int age){
//
}
}

C++也有这样的功能,但是写法不一样,一定要注意了,如下:

1
2
3
4
5
6
7
class Student{
public:
Student(char *name):Student(name,0){}
Student(char *name,int age){
//
}
}

可以看到,他也是使用的初始化参数列表的方式。注意了,C++这里是先调用两个参数构造函数再调用一个参数的构造函数。

C++ 析构函数

创建对象时系统会自动调用构造函数进行初始化工作,同样,销毁对象时系统也会自动调用一个函数来进行清理工作,例如释放分配的内存、关闭打开的文件等,这个函数就是析构函数。

析构函数(Destructor)也是一种特殊的成员函数,没有返回值,不需要程序员显式调用(程序员也没法显式调用),而是在销毁对象时自动执行。构造函数的名字和类名相同,而析构函数的名字是在类名前面加一个~符号。

注意:析构函数没有参数,不能被重载,因此一个类只能有一个析构函数。如果用户没有定义,编译器会自动生成一个默认的析构函数。

我们定义了一个 VLA 类来模拟变长数组,它使用一个构造函数为数组分配内存,这些内存在数组被销毁后不会自动释放,所以非常有必要再添加一个析构函数,专门用来释放已经分配的内存。请看下面的完整示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <iostream>
using namespace std;

class VLA{
public:
VLA(int len); //构造函数
~VLA(); //析构函数
public:
void input(); //从控制台输入数组元素
void show(); //显示数组元素
private:
int *at(int i); //获取第i个元素的指针
private:
const int m_len; //数组长度
int *m_arr; //数组指针
int *m_p; //指向数组第i个元素的指针
};

VLA::VLA(int len): m_len(len){ //使用初始化列表来给 m_len 赋值
if(len > 0){ m_arr = new int[len]; /*分配内存*/ }
else{ m_arr = NULL; }
}
VLA::~VLA(){
delete[] m_arr; //释放内存
}
void VLA::input(){
for(int i=0; m_p=at(i); i++){ cin>>*at(i); }
}
void VLA::show(){
for(int i=0; m_p=at(i); i++){
if(i == m_len - 1){ cout<<*at(i)<<endl; }
else{ cout<<*at(i)<<", "; }
}
}
int * VLA::at(int i){
if(!m_arr || i<0 || i>=m_len){ return NULL; }
else{ return m_arr + i; }
}

int main(){
//创建一个有n个元素的数组(对象)
int n;
cout<<"Input array length: ";
cin>>n;
VLA *parr = new VLA(n);
//输入数组元素
cout<<"Input "<<n<<" numbers: ";
parr -> input();
//输出数组元素
cout<<"Elements: ";
parr -> show();
//删除数组(对象)
delete parr;

return 0;
}

运行结果:
Input array length: 5
Input 5 numbers: 99 23 45 10 100
Elements: 99, 23, 45, 10, 100

~VLA()就是 VLA 类的析构函数,它的唯一作用就是在删除对象(第 53 行代码)后释放已经分配的内存。

函数名是标识符的一种,原则上标识符的命名中不允许出现符号,在析构函数的名字中出现的可以认为是一种特殊情况,目的是为了和构造函数的名字加以对比和区分。

注意:at() 函数只在类的内部使用,所以将它声明为 private 属性;m_len 变量不允许修改,所以用 const 进行了限制,这样就只能使用初始化列表来进行赋值。

C++ 中的 new 和 delete 分别用来分配和释放内存,它们与C语言中 malloc()、free() 最大的一个不同之处在于:用 new 分配内存时会调用构造函数,用 delete 释放内存时会调用析构函数。构造函数和析构函数对于类来说是不可或缺的,所以在C++中我们非常鼓励使用 new 和 delete

析构函数的执行时机

析构函数在对象被销毁时调用,而对象的销毁时机与它所在的内存区域有关。

在所有函数之外创建的对象是全局对象,它和全局变量类似,位于内存分区中的全局数据区,程序在结束执行时会调用这些对象的析构函数。

在函数内部创建的对象是局部对象,它和局部变量类似,位于栈区,函数执行结束时会调用这些对象的析构函数。

new 创建的对象位于堆区,通过 delete 删除时才会调用析构函数;如果没有 delete,析构函数就不会被执行。

对象数组

对象数组是每个数组元素都是对象的数组,

对象数组中的每个元素都需要用构造函数初始化。具体哪些元素用哪些构造函数初始化,取决于定义数组时的写法,请看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include<iostream>
using namespace std;

class CSample{
public:
CSample(){ //构造函数 1
cout<<"Constructor 1 Called"<<endl;
}
CSample(int n){ //构造函数 2
cout<<"Constructor 2 Called"<<endl;
}
};

int main(){
cout<<"stepl"<<endl;
CSample arrayl[2];

cout<<"step2"<<endl;
CSample array2[2] = {4, 5};

cout<<"step3"<<endl;
CSample array3[2] = {3};

cout<<"step4"<<endl;
CSample* array4 = new CSample[2];
delete [] array4;

return 0;
}

程序的输出结果是:
stepl
Constructor 1 Called
Constructor 1 Called
step2
Constructor 2 Called
Constructor 2 Called
step3
Constructor 2 Called
Constructor 1 Called
step4
Constructor 1 Called
Constructor 1 Called

第 16 行的 array1 数组中的两个元素没有指明如何初始化,那么默认调用无参构造函数初始化,因此输出两行 Constructor 1 Called。

第 19 行的 array2 数组进行了初始化,初始化列表 {4, 5} 可以看作用来初始化两个数组元素的参数,所以 array2[0] 以 4 为参数,调用构造函数 2 进行初始化;array2[1] 以 5 为参数,调用构造函数 2 进行初始化。这导致输出两行 Constructor 2 Called。

第 22 行的 array3 只指出了 array3[0] 的初始化方式,没有指出 array3[1] 的初始化方式,因此它们分别用构造函数 2 和构造函数 1 进行初始化。

第 25 行动态分配了一个 CSample 数组,其中有两个元素,没有指出和参数有关的信息,因此这两个元素都用无参构造函数初始化。

在构造函数有多个参数时,数组的初始化列表中要显式地包含对构造函数的调用。例如下面的程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class CTest{
public:
CTest(int n){ } //构造函数(1)
CTest(int n, int m){ } //构造函数(2)
CTest(){ } //构造函数(3)
};
int main(){
//三个元素分别用构造函数(1)、(2)、(3) 初始化
CTest arrayl [3] = { 1, CTest(1,2) };
//三个元素分别用构造函数(2)、(2)、(1)初始化
CTest array2[3] = { CTest(2,3), CTest(1,2), 1};
//两个元素指向的对象分别用构造函数(1)、(2)初始化
CTest* pArray[3] = { new CTest(4), new CTest(1,2) };

return 0;
}

上面程序中比较容易令初学者困惑的是第 13 行。pArray 数组是一个指针数组,其元素不是 CTest 类的对象,而是 CTest 类的指针。第 13 行对 pArray[0] 和 pArray[1] 进行了初始化,把它们初始化为指向动态分配的 CTest 对象的指针,而这两个动态分配出来的 CTest 对象又分别是用构造函数(1)和构造函数(2)初始化的。pArray[2] 没有初始化,其值是随机的,不知道指向哪里。

第 13 行生成了两个 CTest 对象,而不是三个,所以也只调用了两次 CTest 类的构造函数。

C++成员对象和封闭类

一个类的成员变量如果是另一个类的对象,就称之为“成员对象”。包含成员对象的类叫封闭类(enclosed class)。

成员对象的初始化

创建封建类的时候,它的成员对象也需要创建,这就引发了成员对象构造器的调用。

如何让编译器知道,成员对象到底是用哪个构造函数初始化的呢?这就需要借助封闭类构造函数的初始化列表。

构造函数初始化列表的写法如下:

1
2
3
4
类名::构造函数名(参数表): 成员变量1(参数表), 成员变量2(参数表), ...
{
//TODO:
}

对于基本类型的成员变量,“参数表”中只有一个值,就是初始值,在调用构造函数时,会把这个初始值直接赋给成员变量。

但是对于成员对象,“参数表”中存放的是构造函数的参数,它可能是一个值,也可能是多个值,它指明了该成员对象如何被初始化。

请看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <iostream>
using namespace std;
//轮胎类
class Tyre{
public:
Tyre(int radius, int width);
void show() const;
private:
int m_radius; //半径
int m_width; //宽度
};
Tyre::Tyre(int radius, int width) : m_radius(radius), m_width(width){ }
void Tyre::show() const {
cout << "轮毂半径:" << this->m_radius << "吋" << endl;
cout << "轮胎宽度:" << this->m_width << "mm" << endl;
}
//引擎类
class Engine{
public:
Engine(float displacement = 2.0);
void show() const;
private:
float m_displacement;
};
Engine::Engine(float displacement) : m_displacement(displacement) {}
void Engine::show() const {
cout << "排量:" << this->m_displacement << "L" << endl;
}
//汽车类
class Car{
public:
Car(int price, int radius, int width);
void show() const;
private:
int m_price; //价格
Tyre m_tyre;
Engine m_engine;
};
Car::Car(int price, int radius, int width): m_price(price), m_tyre(radius, width)/*指明m_tyre对象的初始化方式*/{ };
void Car::show() const {
cout << "价格:" << this->m_price << "¥" << endl;
this->m_tyre.show();
this->m_engine.show();
}
int main()
{
Car car(200000, 19, 245);
car.show();
return 0;
}

运行结果:
价格:200000¥
轮毂直径:19吋
轮胎宽度:245mm
排量:2L

Car 是一个封闭类,它有两个成员对象:m_tyre 和 m_engine。在编译第 51 行时,编译器需要知道 car 对象中的 m_tyre 和 m_engine 成员对象该如何初始化。

编评器已经知道这里的 car 对象是用第 42 行的 Car(int price, int radius, int width) 构造函数初始化的,那么 m_tyre 和 m_engine 该如何初始化,就要看第 42 行后面的初始化列表了。该初始化列表表明:
m_tyre 应以 radius 和 width 作为参数调用 Tyre(int radius, int width) 构造函数初始化。
但是这里并没有说明 m_engine 该如何处理。在这种情况下,编译器就认为 m_engine 应该用 Engine 类的无参构造函数初始化。而 Engine 类确实有一个无参构造函数(因为设置了默认参数),因此,整个 car 对象的初始化问题就都解决了。

总之,生成封闭类对象的语句一定要让编译器能够弄明白其成员对象是如何初始化的,否则就会编译错误。

在上面的程序中,如果 Car 类的构造函数没有初始化列表,那么第 51 行就会编译出错,因为编译器不知道该如何初始化 car.m_tyre 对象,因为 Tyre 类没有无参构造函数,而编译器又找不到用来初始化 car.m_tyre 对象的参数。

成员对象的消亡

封闭类对象生成时,先执行所有成员对象的构造函数,然后才执行封闭类自己的构造函数。成员对象构造函数的执行次序和成员对象在类定义中的次序一致,与它们在构造函数初始化列表中出现的次序无关。

当封闭类对象消亡时,先执行封闭类的析构函数,然后再执行成员对象的析构函数,成员对象析构函数的执行次序和构造函数的执行次序相反,即先构造的后析构,这是 C++ 处理此类次序问题的一般规律。

请看下面的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include<iostream>
using namespace std;
class Tyre {
public:
Tyre() { cout << "Tyre constructor" << endl; }
~Tyre() { cout << "Tyre destructor" << endl; }
};
class Engine {
public:
Engine() { cout << "Engine constructor" << endl; }
~Engine() { cout << "Engine destructor" << endl; }
};
class Car {
private:
Engine engine;
Tyre tyre;
public:
Car() { cout << "Car constructor" << endl; }
~Car() { cout << "Car destructor" << endl; }
};
int main() {
Car car;
return 0;
}

运行结果:
Engine constructor
Tyre constructor
Car constructor
Car destructor
Tyre destructor
Engine destructor

C++ this指针

this 是 C++ 中的一个关键字,也是一个 const 指针,它指向当前对象,通过它可以访问当前对象的所有成员。

this 只能用在类的内部,通过 this 可以访问类的所有成员,包括 private、protected、public 属性的。

注意,this 是一个指针,要用->来访问成员变量或成员函数。

this 虽然用在类的内部,但是只有在对象被创建以后才会给 this 赋值,并且这个赋值的过程是编译器自动完成的,不需要用户干预,用户也不能显式地给 this 赋值。

几点注意:

  • this 是 const 指针,它的值是不能被修改的,一切企图修改该指针的操作,如赋值、递增、递减等都是不允许的。
  • this 只能在成员函数内部使用,用在其他地方没有意义,也是非法的。
  • 只有当对象被创建后 this 才有意义,因此不能在 static 成员函数中使用(后续会讲到 static 成员)。

this 到底是什么

this 实际上是成员函数的一个形参,在调用成员函数时将对象的地址作为实参传递给 this。不过 this 这个形参是隐式的,它并不出现在代码中,而是在编译阶段由编译器默默地将它添加到参数列表中。

this 作为隐式形参,本质上是成员函数的局部变量,所以只能用在成员函数的内部,并且只有在通过对象调用成员函数时才给 this 赋值。

我们之前讲过成员函数最终被编译成与对象无关的普通函数,除了成员变量,会丢失所有信息,所以编译时要在成员函数中添加一个额外的参数,把当前对象的首地址传入,以此来关联成员函数和成员变量。这个额外的参数,实际上就是 this,它是成员函数和成员变量关联的桥梁。

很多编程语言的this和C++的相似,形参是隐式的。也有不是隐式的,像rust使用self,并且需要在形参列表第一个参数显式声明。

C++ static与静态成员

静态成员变量

每个对象在内存中的地址都不一样,也就造成了每个对象的成员变量也是相互独立的。那么我们希望两个类共享同一个数据,怎么办?其实按照我们在C语言中的经验,我们可以把变量存储在全局变量区就可以了。

那么在C++中又怎么做呢?

在多个对象之间共享数据,对象 a 改变了某份数据后对象 b 可以检测到。共享数据的典型使用场景是计数,以前面的 Student 类为例,如果我们想知道班级中共有多少名学生,就可以设置一份共享的变量,每次创建对象时让该变量加 1。

在C++中,我们可以使用静态成员变量来实现多个对象共享数据的目标。静态成员变量是一种特殊的成员变量,它被关键字**static**修饰,例如:

1
2
3
4
5
6
7
8
9
10
11
class Student{
public:
Student(char *name, int age, float score);
void show();
public:
static int m_total; //静态成员变量
private:
char *m_name;
int m_age;
float m_score;
};

这段代码声明了一个静态成员变量 m_total,用来统计学生的人数。

static 成员变量属于类,不属于某个具体的对象,即使创建多个对象,也只为 m_total 分配一份内存,所有对象使用的都是这份内存中的数据。当某个对象修改了 m_total,也会影响到其他对象。

static 成员变量必须在类声明的外部初始化,具体形式为:

1
type class::name = value;

type 是变量的类型,class 是类名,name 是变量名,value 是初始值。将上面的 m_total 初始化:

1
int Student::m_total = 0;

静态成员变量在初始化时不能再加 static,但必须要有数据类型。被 private、protected、public 修饰的静态成员变量都可以用这种方式初始化。

注意:static 成员变量的内存既不是在声明类时分配,也不是在创建对象时分配,而是在(类外)初始化时分配。反过来说,没有在类外初始化的 static 成员变量不能使用。

1
2
3
4
5
6
7
8
//通过类类访问 static 成员变量
Student::m_total = 10;
//通过对象来访问 static 成员变量
Student stu("小明", 15, 92.5f);
stu.m_total = 20;
//通过对象指针来访问 static 成员变量
Student *pstu = new Student("李华", 16, 96);
pstu -> m_total = 20;

这三种方式是等效的。

注意:static 成员变量不占用对象的内存,而是在所有对象之外开辟内存,即使不创建对象也可以访问。具体来说,static 成员变量和普通的 static 变量类似,都在内存分区中的全局数据区分配内存。

  • 一个类中可以有一个或多个静态成员变量,所有的对象都共享这些静态成员变量,都可以引用它。
  • static 成员变量和普通 static 变量一样,都在内存分区中的全局数据区分配内存,到程序结束时才释放。这就意味着,static 成员变量不随对象的创建而分配内存,也不随对象的销毁而释放内存。而普通成员变量在对象创建时分配内存,在对象销毁时释放内存。
  • 静态成员变量必须初始化,而且只能在类体外进行。例如:
    int Student::m_total = 10;
    初始化时可以赋初值,也可以不赋值。如果不赋值,那么会被默认初始化为 0。全局数据区的变量都有默认的初始值 0,而动态数据区(堆区、栈区)变量的默认值是不确定的,一般认为是垃圾值。
  • 静态成员变量既可以通过对象名访问,也可以通过类名访问,但要遵循 private、protected 和 public 关键字的访问权限限制。当通过对象名访问时,对于不同的对象,访问的是同一份内存。

静态成员函数

在类中,static 除了可以声明静态成员变量,还可以声明静态成员函数。普通成员函数可以访问所有成员(包括成员变量和成员函数),静态成员函数只能访问静态成员。

编译器在编译一个普通成员函数时,会隐式地增加一个形参 this,并把当前对象的地址赋值给 this,所以普通成员函数只能在创建对象后通过对象来调用,因为它需要当前对象的地址。而静态成员函数可以通过类来直接调用,编译器不会为它增加形参 this,它不需要当前对象的地址,所以不管有没有创建对象,都可以调用静态成员函数。

普通成员变量占用对象的内存,静态成员函数没有 this 指针,不知道指向哪个对象,无法访问对象的成员变量,也就是说静态成员函数不能访问普通成员变量,只能访问静态成员变量。

普通成员函数必须通过对象才能调用,而静态成员函数没有 this 指针,无法在函数体内部访问某个对象,所以不能调用普通成员函数,只能调用静态成员函数。

静态成员函数与普通成员函数的根本区别在于:普通成员函数有 this 指针,可以访问类中的任意成员;而静态成员函数没有 this 指针,只能访问静态成员(包括静态成员变量和静态成员函数)。

下面是一个完整的例子,该例通过静态成员函数来获得学生的总人数和总成绩:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <iostream>
using namespace std;
class Student{
public:
Student(char *name, int age, float score);
void show();
public: //声明静态成员函数
static int getTotal();
static float getPoints();
private:
static int m_total; //总人数
static float m_points; //总成绩
private:
char *m_name;
int m_age;
float m_score;
};
int Student::m_total = 0;
float Student::m_points = 0.0;
Student::Student(char *name, int age, float score): m_name(name), m_age(age), m_score(score){
m_total++;
m_points += score;
}
void Student::show(){
cout<<m_name<<"的年龄是"<<m_age<<",成绩是"<<m_score<<endl;
}
//定义静态成员函数
int Student::getTotal(){
return m_total;
}
float Student::getPoints(){
return m_points;
}
int main(){
(new Student("小明", 15, 90.6)) -> show();
(new Student("李磊", 16, 80.5)) -> show();
(new Student("张华", 16, 99.0)) -> show();
(new Student("王康", 14, 60.8)) -> show();
int total = Student::getTotal();
float points = Student::getPoints();
cout<<"当前共有"<<total<<"名学生,总成绩是"<<points<<",平均分是"<<points/total<<endl;
return 0;
}

运行结果:
小明的年龄是15,成绩是90.6
李磊的年龄是16,成绩是80.5
张华的年龄是16,成绩是99
王康的年龄是14,成绩是60.8
当前共有4名学生,总成绩是330.9,平均分是82.725

总人数 m_total 和总成绩 m_points 由各个对象累加得到,必须声明为 static 才能共享;getTotal()、getPoints() 分别用来获取总人数和总成绩,为了访问 static 成员变量,我们将这两个函数也声明为 static。

在C++中,静态成员函数的主要目的是访问静态成员。getTotal()、getPoints() 当然也可以声明为普通成员函数,但是它们都只对静态成员进行操作,加上 static 语义更加明确。

和静态成员变量类似,静态成员函数在声明时要加 static,在定义时不能加 static。静态成员函数可以通过类来调用(一般都是这样做),也可以通过对象来调用,上例仅仅演示了如何通过类来调用。

C++ const成员变量和成员函数

在类中,如果你不希望某些数据被修改,可以使用const关键字加以限定。const 可以用来修饰成员变量和成员函数。

const成员变量

const 成员变量的用法和普通 const 变量的用法相似,只需要在声明时加上 const 关键字。初始化 const 成员变量只有一种方法,就是通过构造函数的初始化列表,这点在前面已经讲到了。

const成员函数(常成员函数)

const 成员函数可以使用类中的所有成员变量,但是不能修改它们的值,这种措施主要还是为了保护数据而设置的。const 成员函数也称为常成员函数

我们通常将 get 函数设置为常成员函数。读取成员变量的函数的名字通常以get开头,后跟成员变量的名字,所以通常将它们称为 get 函数。

常成员函数需要在声明和定义的时候在函数头部的结尾加上 const 关键字,请看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Student{
public:
Student(char *name, int age, float score);
void show();
//声明常成员函数
char *getname() const;
int getage() const;
float getscore() const;
private:
char *m_name;
int m_age;
float m_score;
};
Student::Student(char *name, int age, float score): m_name(name), m_age(age), m_score(score){ }
void Student::show(){
cout<<m_name<<"的年龄是"<<m_age<<",成绩是"<<m_score<<endl;
}
//定义常成员函数
char * Student::getname() const{
return m_name;
}
int Student::getage() const{
return m_age;
}
float Student::getscore() const{
return m_score;
}

getname()、getage()、getscore() 三个函数的功能都很简单,仅仅是为了获取成员变量的值,没有任何修改成员变量的企图,所以我们加了 const 限制,这是一种保险的做法,同时也使得语义更加明显。

需要强调的是,必须在成员函数的声明和定义处同时加上 const 关键字。char _getname() const和char _getname()是两个不同的函数原型,如果只在一个地方加 const 会导致声明和定义处的函数原型冲突。

最后再来区分一下 const 的位置:

  • 函数开头的 const 用来修饰函数的返回值,表示返回值是 const 类型,也就是不能被修改,例如const char * getname()。
  • 函数头部的结尾加上 const 表示常成员函数,这种函数只能读取成员变量的值,而不能修改成员变量的值,例如char * getname() const。

C++ const对象(常对象)

在 C++ 中,const 也可以用来修饰对象,称为常对象。一旦将对象定义为常对象之后,就只能调用类的 const 成员(包括 const 成员变量和 const 成员函数)了。

定义常对象的语法和定义常量的语法类似:

1
2
const  class  object(params);
class const object(params);

当然你也可以定义 const 指针:

1
2
const class *p = new class(params);
class const *p = new class(params);

class为类名,object为对象名,params为实参列表,p为指针名。两种方式定义出来的对象都是常对象。

一旦将对象定义为常对象之后,不管是哪种形式,该对象就只能访问被 const 修饰的成员了(包括 const 成员变量和 const 成员函数),因为非 const 成员可能会修改对象的数据(编译器也会这样假设),C++禁止这样做。

常对象使用举例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <iostream>
using namespace std;

class Student{
public:
Student(char *name, int age, float score);
public:
void show();
char *getname() const;
int getage() const;
float getscore() const;
private:
char *m_name;
int m_age;
float m_score;
};

Student::Student(char *name, int age, float score): m_name(name), m_age(age), m_score(score){ }
void Student::show(){
cout<<m_name<<"的年龄是"<<m_age<<",成绩是"<<m_score<<endl;
}
char * Student::getname() const{
return m_name;
}
int Student::getage() const{
return m_age;
}
float Student::getscore() const{
return m_score;
}

int main(){
const Student stu("小明", 15, 90.6);
//stu.show(); //error
cout<<stu.getname()<<"的年龄是"<<stu.getage()<<",成绩是"<<stu.getscore()<<endl;

const Student *pstu = new Student("李磊", 16, 80.5);
//pstu -> show(); //error
cout<<pstu->getname()<<"的年龄是"<<pstu->getage()<<",成绩是"<<pstu->getscore()<<endl;

return 0;
}

本例中,stu、pstu 分别是常对象以及常对象指针,它们都只能调用 const 成员函数。

C++ 友元函数和友元类(C++ friend关键字)

在 C++ 中,一个类中可以有 public、protected、private 三种属性的成员,通过对象可以访问 public 成员,只有本类中的函数可以访问本类的 private 成员。

现在,我们来介绍一种例外情况——友元(friend)。借助友元(friend),可以使得其他类中的成员函数以及全局范围内的函数访问当前类的 private 成员。

riend 的意思是朋友,或者说是好友,与好友的关系显然要比一般人亲密一些。我们会对好朋友敞开心扉,倾诉自己的秘密,而对一般人会谨言慎行,潜意识里就自我保护。在 C++ 中,这种友好关系可以用 friend 关键字指明,中文多译为“友元”,借助友元可以访问与其有好友关系的类中的私有成员。如果你对“友元”这个名词不习惯,可以按原文 friend 理解为朋友。

友元函数

在当前类以外定义的、不属于当前类的函数也可以在类中声明,但要在前面加 friend 关键字,这样就构成了友元函数。友元函数可以是不属于任何类的非成员函数,也可以是其他类的成员函数。

友元函数可以访问当前类中的所有成员,包括 public、protected、private 属性的。

将非成员函数声明为友元函数。

请大家直接看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <iostream>
using namespace std;
class Student{
public:
Student(char *name, int age, float score);
public:
friend void show(Student *pstu); //将show()声明为友元函数
private:
char *m_name;
int m_age;
float m_score;
};
Student::Student(char *name, int age, float score): m_name(name), m_age(age), m_score(score){ }
//非成员函数
void show(Student *pstu){
cout<<pstu->m_name<<"的年龄是 "<<pstu->m_age<<",成绩是 "<<pstu->m_score<<endl;
}
int main(){
Student stu("小明", 15, 90.6);
show(&stu); //调用友元函数
Student *pstu = new Student("李磊", 16, 80.5);
show(pstu); //调用友元函数
return 0;
}

运行结果:
小明的年龄是 15,成绩是 90.6
李磊的年龄是 16,成绩是 80.5

show() 是一个全局范围内的非成员函数,它不属于任何类,它的作用是输出学生的信息。m_name、m_age、m_score 是 Student 类的 private 成员,原则上不能通过对象访问,但在 show() 函数中又必须使用这些 private 成员,所以将 show() 声明为 Student 类的友元函数。读者可以亲自测试一下,将上面程序中的第 8 行删去,观察编译器的报错信息。

注意,友元函数不同于类的成员函数,在友元函数中不能直接访问类的成员,必须要借助对象。下面的写法是错误的:

1
2
3
void show(){
cout<<m_name<<"的年龄是 "<<m_age<<",成绩是 "<<m_score<<endl;
}

成员函数在调用时会隐式地增加 this 指针,指向调用它的对象,从而使用该对象的成员;而 show() 是非成员函数,没有 this 指针,编译器不知道使用哪个对象的成员,要想明确这一点,就必须通过参数传递对象(可以直接传递对象,也可以传递对象指针或对象引用),并在访问成员时指明对象。

将其他类的成员函数声明为友元函数

friend 函数不仅可以是全局函数(非成员函数),还可以是另外一个类的成员函数。请看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <iostream>
using namespace std;
class Address; //提前声明Address类
//声明Student类
class Student{
public:
Student(char *name, int age, float score);
public:
void show(Address *addr);
private:
char *m_name;
int m_age;
float m_score;
};
//声明Address类
class Address{
private:
char *m_province; //省份
char *m_city; //城市
char *m_district; //区(市区)
public:
Address(char *province, char *city, char *district);
//将Student类中的成员函数show()声明为友元函数
friend void Student::show(Address *addr);
};
//实现Student类
Student::Student(char *name, int age, float score): m_name(name), m_age(age), m_score(score){ }
void Student::show(Address *addr){
cout<<m_name<<"的年龄是 "<<m_age<<",成绩是 "<<m_score<<endl;
cout<<"家庭住址:"<<addr->m_province<<"省"<<addr->m_city<<"市"<<addr->m_district<<"区"<<endl;
}
//实现Address类
Address::Address(char *province, char *city, char *district){
m_province = province;
m_city = city;
m_district = district;
}
int main(){
Student stu("小明", 16, 95.5f);
Address addr("陕西", "西安", "雁塔");
stu.show(&addr);

Student *pstu = new Student("李磊", 16, 80.5);
Address *paddr = new Address("河北", "衡水", "桃城");
pstu -> show(paddr);
return 0;
}

运行结果:
小明的年龄是 16,成绩是 95.5
家庭住址:陕西省西安市雁塔区
李磊的年龄是 16,成绩是 80.5
家庭住址:河北省衡水市桃城区

本例定义了两个类 Student 和 Address,程序第 27 行将 Student 类的成员函数 show() 声明为 Address 类的友元函数,由此,show() 就可以访问 Address 类的 private 成员变量了。

几点注意:
① 程序第 4 行对 Address 类进行了提前声明,是因为在 Address 类定义之前、在 Student 类中使用到了它,如果不提前声明,编译器会报错,提示'Address' has not been declared。类的提前声明和函数的提前声明是一个道理。

② 程序将 Student 类的声明和实现分开了,而将 Address 类的声明放在了中间,这是因为编译器从上到下编译代码,show() 函数体中用到了 Address 的成员 province、city、district,如果提前不知道 Address 的具体声明内容,就不能确定 Address 是否拥有该成员(类的声明中指明了类有哪些成员)。

这里简单介绍一下类的提前声明。一般情况下,类必须在正式声明之后才能使用;但是某些情况下(如上例所示),只要做好提前声明,也可以先使用。

但是应当注意,类的提前声明的使用范围是有限的,只有在正式声明一个类以后才能用它去创建对象。如果在上面程序的第4行之后增加如下所示的一条语句,编译器就会报错:

1
Address addr;  //企图使用不完整的类来创建对象

因为创建对象时要为对象分配内存,在正式声明类之前,编译器无法确定应该为对象分配多大的内存。编译器只有在“见到”类的正式声明后(其实是见到成员变量),才能确定应该为对象预留多大的内存。在对一个类作了提前声明后,可以用该类的名字去定义指向该类型对象的指针变量(本例就定义了 Address 类的指针变量)或引用变量(后续会介绍引用),因为指针变量和引用变量本身的大小是固定的,与它所指向的数据的大小无关。

③ 一个函数可以被多个类声明为友元函数,这样就可以访问多个类中的 private 成员。

友元类

不仅可以将一个函数声明为一个类的“朋友”,还可以将整个类声明为另一个类的“朋友”,这就是友元类。友元类中的所有成员函数都是另外一个类的友元函数。

例如将类 B 声明为类 A 的友元类,那么类 B 中的所有成员函数都是类 A 的友元函数,可以访问类 A 的所有成员,包括 public、protected、private 属性的。

更改上例的代码,将 Student 类声明为 Address 类的友元类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <iostream>
using namespace std;
class Address; //提前声明Address类
//声明Student类
class Student{
public:
Student(char *name, int age, float score);
public:
void show(Address *addr);
private:
char *m_name;
int m_age;
float m_score;
};
//声明Address类
class Address{
public:
Address(char *province, char *city, char *district);
public:
//将Student类声明为Address类的友元类
friend class Student;
private:
char *m_province; //省份
char *m_city; //城市
char *m_district; //区(市区)
};
//实现Student类
Student::Student(char *name, int age, float score): m_name(name), m_age(age), m_score(score){ }
void Student::show(Address *addr){
cout<<m_name<<"的年龄是 "<<m_age<<",成绩是 "<<m_score<<endl;
cout<<"家庭住址:"<<addr->m_province<<"省"<<addr->m_city<<"市"<<addr->m_district<<"区"<<endl;
}
//实现Address类
Address::Address(char *province, char *city, char *district){
m_province = province;
m_city = city;
m_district = district;
}
int main(){
Student stu("小明", 16, 95.5f);
Address addr("陕西", "西安", "雁塔");
stu.show(&addr);

Student *pstu = new Student("李磊", 16, 80.5);
Address *paddr = new Address("河北", "衡水", "桃城");
pstu -> show(paddr);
return 0;
}

第 24 行代码将 Student 类声明为 Address 类的友元类,声明语句为:

1
friend class Student;

有的编译器也可以不写 class 关键字,不过为了增强兼容性还是建议写上。

关于友元,有两点需要说明:

  • 友元的关系是单向的而不是双向的。如果声明了类 B 是类 A 的友元类,不等于类 A 是类 B 的友元类,类 A 中的成员函数不能访问类 B 中的 private 成员。
  • 友元的关系不能传递。如果类 B 是类 A 的友元类,类 C 是类 B 的友元类,不等于类 C 是类 A 的友元类。

除非有必要,一般不建议把整个类声明为友元类,而只将某些成员函数声明为友元函数,这样更安全一些。

类其实也是一种作用域

类其实也是一种作用域,每个类都会定义它自己的作用域。在类的作用域之外,普通的成员只能通过对象(可以是对象本身,也可以是对象指针或对象引用)来访问,静态成员既可以通过对象访问,又可以通过类访问,而 typedef 定义的类型只能通过类来访问。

下面的例子使用不同的方式访问了不同的成员:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include<iostream>
using namespace std;
class A{
public:
typedef int INT;
static void show();
void work();
};
void A::show(){ cout<<"show()"<<endl; }
void A::work(){ cout<<"work()"<<endl; }
int main(){
A a;
a.work(); //通过对象访问普通成员
a.show(); //通过对象访问静态成员
A::show(); //通过类访问静态成员
A::INT n = 10; //通过类访问 typedef 定义的类型
return 0;
}

定义在类外部的成员

一个类就是一个作用域的事实能够很好的解释为什么我们在类的外部定义成员函数时必须同时提供类名和函数名。在类的外部,类内部成员的名字是不可见的。

一旦遇到类名,定义的剩余部分就在类的作用域之内了,这里的剩余部分包括参数列表和函数体。结果就是,我们可以直接使用类的其他成员而无需再次授权了。请看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include<iostream>
using namespace std;
class A{
public:
typedef char* PCHAR;
public:
void show(PCHAR str);
private:
int n;
};
void A::show(PCHAR str){
cout<<str<<endl;
n = 10;
}
int main(){
A obj;
obj.show("http://c.biancheng.net");
return 0;
}

我们在定义 show() 函数时用到了类 A 中定义的一种类型 PCHAR,因为前面已经指明了当前正位于 A 类的作用域中,所以不用再使用A::PCHAR这样的冗余形式。同理,编译器也知道函数体中用到的变量 n 也位于 A 类的作用域。

C++ class和struct的区别

C++ 中保留了C语言的 struct 关键字,并且加以扩充。在C语言中,struct 只能包含成员变量,不能包含成员函数。而在C++中,struct 类似于 class,既可以包含成员变量,又可以包含成员函数。

C++中的 struct 和 class 基本是通用的,唯有几个细节不同:

  • 使用 class 时,类中的成员默认都是 private 属性的;而使用 struct 时,结构体中的成员默认都是 public 属性的。
  • class 继承默认是 private 继承,而 struct 继承默认是 public 继承。
  • class 可以使用模板,而 struct 不能。(泛型编程)

C++ 没有抛弃C语言中的 struct 关键字,其意义就在于给C语言程序开发人员有一个归属感,并且能让C++编译器兼容以前用C语言开发出来的项目。

**在编写C++代码时,强烈建议使用 class 来定义类,而使用 struct 来定义结构体,这样做语义更加明确。
**